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Abstract
Objectives Mild cognitive impairment (MCI) is a well-defined non-motor manifestation and a harbinger of dementia in
Parkinson’s disease. This study is to investigate brain connectivity markers of MCI using diffusion tensor imaging and
resting-state functional MRI, and help MCI diagnosis in PD patients.
Methods We evaluated 131 advanced PD patients (disease duration > 5 years; 59 patients with MCI) and 48 healthy
control subjects who underwent a diffusion-weighted and resting-state functional MRI scanning. The patients were
randomly assigned to training (n = 100) and testing (n = 31) groups. According to the Brainnetome Atlas, ROI-based
structural and functional connectivity analysis was employed to extract connectivity features. To identify features with
significant discriminative power for patient classification, all features were put into an all-relevant feature selection
procedure within cross-validation loops.
Results Nine features were identified to be significantly relevant to patient classification. They showed significant differences
between PD patients with and without MCI and positively correlated with the MoCA score. Five of them did not differ between
general MCI subjects and healthy controls from the ADNI database, which suggested that they could uniquely play a part in the
MCI diagnosis of PD. On basis of these relevant features, the random forest model constructed from the training group achieved
an accuracy of 83.9% in the testing group, to discriminate patients with and without MCI.
Conclusions The results of our study provide preliminary evidence that structural and functional connectivity abnormalities may
contribute to cognitive impairment and allow to predict the outcome of MCI diagnosis in PD.
Key Points
• Nine MCI markers were identified using an all-relevant feature selection procedure.
• Five of nine markers differed between MCI and NC in PD, but not in general persons.
• A random forest model achieved an accuracy of 83.9% for MCI diagnosis in PD.
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Abbreviations
AAL Automated Anatomical Labeling
AD Alzheimer’s disease
ADNI Alzheimer’s Disease Neuroimaging Initiative
BDI Beck Depression Inventory
DAN Dorsal attention network
DMN Default-mode network
FA Fractional anisotropy
FDR False discovery rate
FPN Frontoparietal network
HAMA Hamilton Anxiety Scale
IFG Inferior frontal gyrus
IPL Inferior parietal lobule
LEDD Levodopa equivalent daily dose
MCI Mild cognitive impairment
MoCA Montreal Cognitive Assessment Scale
NC Normal cognition
PCC Posterior cingulate cortex
PD Parkinson’s disease
PDQ-39 Parkinson’s Disease Questionnaire
PhG Parahippocampal gyrus
PoG Postcentral gyrus
PPMI Parkinson Progression Markers Initiative
PrG Precentral gyrus
PSQI Pittsburgh Sleep Quality Index
rs-fMRI Resting-state functional MRI
SD Standard deviation
SFG Superior frontal gyrus
STG Superior temporal gyrus
STN Subthalamic nucleus
UPDRS-III Unified Parkinson’s Disease Rating Scale part

III

Supplementary Information The online version contains supplementary
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Introduction

Mild cognitive impairment (MCI), a common non-motor
manifestation of Parkinson’s disease (PD), is defined as a
cognitive decline that is not normal for the age and educational
level of the patient but where normal functional activities can
be maintained [1, 2]. MCI patients in PD have a high risk of
developing dementia, which can occur in more than 80% of
PD patients over the long term [3]. MCI is regarded as a
potential early stage of dementia. Early MCI diagnosis in
PD may help prevent dementia in advance, based on the iden-
tification of brain abnormalities underlying cognitive
impairment.

Over the past decade, modern neuroimaging techniques,
including PET and MRI, have provided useful tools to
investigate brain abnormalities in PD-MCI patients [4–8].
In a PET study, PD-MCI patients showed hypometabolism
in the angular gyrus, occipital, orbital, and anterior frontal

lobes [6]. Wu et al found that all the cognitive domain
scores with the exception of language in PD patients cor-
related with 18F-FDG metabolisms primarily in posterior
temporo-parieto-occipital association cortical areas [7].
Structural abnormalities in gray and white matter associat-
ed with cognitive impairment in PD are measured using
structural MRI images and diffusion tensor imaging (DTI),
respectively. Previous structural MRI studies in PD-MCI
patients have demonstrated a pattern of cortical volume
loss in posterior, parietal and frontal cortices, and atrophy
in the hippocampus [9–11]. Conversely, Wang et al
showed that the volume of the hippocampal fissure was
enlarged in PD-MCI patients compared with healthy con-
trols [12]. Moreover, white matter abnormalities of the
corpus callosum might contribute to cognitive impairment
in PD by disrupting information transfer across inter-
hemispheric and callosal-cortical projections [13, 14].

In addition to intra-regional abnormalities, cognitive
impairment in PD was also related to inter-regional con-
nectivity, defined by two MRI-based measures [15–20],
diffusion tractography [21] and resting-state functional
MRI (rs-fMRI) [22]. In a DTI study analyzing global
and local network metrics in the whole-brain, PD-MCI
patients showed lower global efficiency and larger shortest
path length than healthy controls [20]. And the nodal
efficiency of the orbitofrontal part was closely associated
with the overall cognitive ability and multiple cognitive
sub-domains [20]. Baggio et al found reduced within-
network connectivity in the dorsal attention network
(DAN) and default-mode network (DMN), and functional
connectivity between DAN and frontoparietal network
(FPN), as well as loss of normal DAN-DMN anticorrelation
in PD-MCI patients [17]. However, whether and how these
intra- and inter-regional abnormalities contribute to clinical
MCI diagnosis in PD are currently not well known. Building
machine learning-based classifiers to discriminate patients
with and without cognitive impairment can allow screening
potential imaging markers of MCI in a data-driven manner.
Their clinical value can be evaluated by the accuracy of the
classifiers. Moreover, this evaluation has the potential to lead
to a deeper understanding of neural substrates of cognitive
impairment in PD.

In our study, DTI and rs-fMRI data were acquired from
advanced PD patients and healthy control subjects in our
cohort. Secondly, structural and functional connectivity fea-
tures were extracted on basis of the Brainnetome Atlas [23]
and put into an all-relevant feature selection procedure
within cross-validation loops to identify all the features
with significant discriminative power for patient classifica-
tion. On basis of these relevant features, the performance of
the model constructed from the training group was assessed
in the testing group, to discriminate patients with and with-
out MCI.
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Materials and methods

Participants and clinical assessment

The present study was approved by the local ethics committee
of the hospital for human research. Written informed consent
was obtained from all participants after full explanation of the
procedure involved. We evaluated 165 consecutive advanced
PD patients (disease duration > 5 years) recruited from the
Department of Functional Neurosurgery, Shenzhen Second
People’s Hospital, between July 2017 and March 2020, and
48 healthy control subjects. PD was diagnosed according to
the UK Parkinson’s Disease Brain Bank criteria [24].
Participants were excluded if they were (a) meeting the diag-
nostic criteria for dementia in PD; (b) presence of other sig-
nificant psychiatric, neurological, or systemic comorbidity; (c)
having obvious abnormal findings on brain imaging; and (d)
having MRI artefacts. After screening, 131 PD patients were
included in our study (Supplementary Figure S1). Forty-eight
healthy controls without MCI were matched to PD patients in
terms of age, gender, and education.

The motor and non-motor symptoms of patients when
medication off were assessed by two experienced clinical neu-
rologists (L.J.L. and Z.D.D.) using multiple rating scales. The
Montreal Cognitive Assessment Scale (MoCA), comprising
tests of verbal, visuospatial, visual memory, and attention, is
suitable to evaluate overall cognitive ability in PD. Besides, a
comprehensive neuropsychological assessment was
employed in each patient for the five cognitive domains of
attention and workingmemory, executive, language, memory,
and visuospatial, according to theMovement Disorder Society
Task Force Level II criteria [1].

The diagnosis of PD-MCI was made according to the
Movement Disorder Society Task Force Level II criteria [1].
PD-MCI was diagnosed when (1) impairment on at least two
neuropsychological tests, represented by either two impaired
tests in one cognitive domain or one impaired test in two
different cognitive domains, and (2) with scores 1.5 standard
deviations (SDs) below the average. Patients who did not meet
the criteria for PD-MCI were classified as PD patients with
normal cognition (PD-NC). After clinical assessment, 59 PD
patients fulfilled the criteria for MCI and the rest 72 patients
were PD-NC.

Image acquisition and preprocessing

Scanning was performed on a 3 Tesla MR system (Prisma,
Siemens Healthcare) equipped with a 64-channel head coil.
Patients underwent a scan more than 12 h after the withdrawal
of their dopaminergic medications in a clinically defined “off-
state.” The protocol included high-resolution T1-weighted
MR images (magnetization-prepared rapid acquisition gradi-
ent echo sequence, resolution 0.9 × 0.9 × 0.9 mm3, TE/TR = 4

ms/2300 ms), diffusion-weighted images (echo-planar imag-
ing, 60 weighted directions and 2 b0 images, b = 1000 s/mm2,
resolution 2 × 2 × 2 mm3, TE/TR = 80 ms/8300 ms), and rs-
fMRI images (echo-planar imaging, resolution 3 × 3 × 3.5
mm3, TE/TR = 28 ms/2000 ms, 240 volumes in 8 min, eyes
closed).

The preprocessing of DTI data was performed using the
toolbox of PANDA [25] in MATLAB (MathWorks). It
consisted of skull removal and cropping the gap, correcting
motion and eddy current distortions, calculating diffusion ten-
sors. The rs-fMRI data was preprocessed in FSL [26]. The
main steps included brain extraction, slice timing correction,
rigid-body motion correction, spatial smoothing using a
Gaussian kernel of FWHM of 6 mm, and high-pass temporal
filtering of 150 s. To remove the effects of motion, non-neural
physiology, scanner artifacts, and other confounds, we used
the tool of FIX [27–29] for noise cleaning as described previ-
ously [30]. Despite noise cleaning, the mean absolute dis-
placement still showed a significant difference between PD
patients and healthy controls (p = 0.004), but not between
PD-MCI and PD-NC patients (p = 0.16).

The extraction of connectivity features

The Brainnetome Atlas [23] provides a more elaborate frame-
work for whole-brain connectome analysis in human brain
research than the traditional Automated Anatomical
Labeling (AAL) atlas. The atlas parcellates the brain into
210 cortical and 36 subcortical sub-regions. In addition, four
specific sub-nuclei including the red nucleus, substantia nigra,
subthalamic nucleus (STN), and hypothalamus were added
into the segmented brain, which resulted in a total of 254
network nodes. The network edges (connectivity features)
are defined by structural and functional connectivity strength
evaluated fromDTI and rs-fMRI data, respectively. The struc-
tural connectivity strength between two nodes was computed
to be the average FA value of all the tracts through the corre-
sponding two nodes after tractography as described previously
[31]. For the preprocessed rs-fMRI data, the mean time series
were extracted from each sub-region. Pairwise functional con-
nectivity strength was then estimated by calculating Pearson’s
correlation coefficients on the time series and transforming the
correlation coefficients into z-scores with Fisher’s r-to-z trans-
formation. After the processing, we extracted 64262 connec-
tivity features in total.

Feature selection

bWe randomly split all the patients into 2 groups, and
then we used the one group including 100 patients as the
training group and the other one including 31 patients as
the testing group. In each group, the percentage of PD-
MCI and PD-NC patients was nearly the same. All steps
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of feature selection and model training were just per-
formed in the training group.

To select features with significant discriminative power for
MCI diagnosis, all connectivity features were put into an all-
relevant feature selection procedure within cross-validation
loops using the random forest algorithm (Supplementary
Figure S2), which was detailed in our previous study [30].
Features with significantly higher selection frequency than
random values defined by permutation test (permuted 1000
times) were regarded as MCI-related selections, with p value
< 0.05 after false discovery rate (FDR) correction for multiple
comparisons [32].

MCI subjects and matched healthy controls from the
ADNI database

After feature selection, connectivity markers were iden-
tified to be relevant to MCI diagnosis in PD. Next, we
wanted to know whether these markers also acted for the
discrimination between general MCI patients and healthy

controls. Fifty MCI subjects and 50 healthy, age-, gen-
der-, and education-matched controls were selected from
the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database. T1-weighted MRI, DTI, and rs-fMRI
images were all available for these 100 participants.
After the same data processing flow mentioned above,
connectivity features in MCI subjects and healthy con-
trols were extracted for further group comparisons.

External validation using the PPMI database

To evaluate the generalizability of our random forest model,
we used an external validation sample including 50 PD-MCI
patients and 50 age-, gender-, and education-matched PD-NC
controls from the Parkinson Progression Markers Initiative
(PPMI) database. Using the same data processing flow men-
tioned above, connectivity markers were extracted and put
into the model being constructed on our database, to predict
the outcome of MCI diagnosis in the external validation
sample.

Table 1 The demographic and clinical outcome of all participants

PD-MCI (n = 59) PD-NC (n = 72) HC (n = 48) p
valuea

PD-MCI
versus
PD-NC
p valueb

PD-MCI
versus
HC p valueb

PD-NC
versus
HC
p valueb

Age (years) 62.8 ± 8.8 (51–76) 59.3 ± 10.8 (48–78) 60.4 ± 10.2
(45–75)

0.14 0.12 0.44 0.83

Sex (M/F) 27/32 42/30 25/23 0.36c 0.15c 0.52c 0.50c

Education (years) 7.8 ± 4.3 (2–16) 8.9 ± 4.5 (3–16) 9.3 ± 4.1 (5–16) 0.15 0.29 0.16 0.86

Disease duration
(years)

9.1 ± 3.3 (5–16) 8.5 ± 3.5 (5–15) NA NA 0.32 NA NA

LEDD (mg) 810.6 ± 288.5
(425–1750)

744.1 ± 259.3
(250–1488.5)

NA NA 0.17 NA NA

UPDRS-III 53.9 ± 11.9 (33–83) 49.7 ± 15.1 (15–82) NA NA 0.084 NA NA

MoCA 21.8 ± 4.5 (11–28) 26.8 ± 2.6 (23–30) 27.1 ± 2.2
(24–30)

< 0.001 < 0.001 < 0.001 0.88

PDQ-39 61.5 ± 26.0 (13–130) 52.9 ± 28.3 (5–148) NA NA 0.075 NA NA

BDI 11.9 ± 9.1 (3–42) 9.3 ± 8.5 (0–39) 8.4 ± 7.2 (0–32) 0.075 0.18 0.083 0.83

HAMA 17.1 ± 8.0 (3–38) 14.0 ± 8.1 (0–33) 12.9 ± 7.4 (0–30) 0.016 0.068 0.019 0.73

Apathy scale 12.9 ± 5.8 (3–29) 13.3 ± 6.2 (3–31) 9.6 ± 5.1 (2–20) 0.002 0.92 0.011 0.002

PSQI 15.2 ± 8.9 (0–21) 13.1 ± 8.2 (3–20) 11.6 ± 7.5 (0–18) 0.078 0.32 0.067 0.59

BDI, Beck Depression Inventory; F, female; HAMA, Hamilton Anxiety Scale; HC, healthy controls; LEDD, levodopa equivalent daily dose; M, male;
MoCA, Montreal Cognitive Assessment Scale; NA, not applicable; PD-MCI, PD patients with mild cognitive impairment; PD-NC, PD patients with
normal cognition; PSQI, Pittsburgh Sleep Quality Index; UPDRS-III, Unified Parkinson’s Disease Rating Scale part III; PDQ-39, Parkinson’s Disease
Questionnaire

Values are represented as the mean ± standard deviation with the range in parentheses, except for the gender distribution
a Unless otherwise indicated, p values were calculated with one-way ANOVA tests among three groups
bUnless otherwise indicated, p values were calculated with two-tailed t-tests
c p value was obtained using chi-squared tests
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Results

Demographic characteristics and clinical outcome

The demographic characteristics and clinical outcome of
all participants are listed in Table 1. Fifty-nine PD pa-
tients (45.0%) fulfilled the criteria for MCI and the rest
(55.0%) were cognitively normal. No significant differ-
ences were found in age, gender, or education among
PD-MCI patients, PD-NC patients, and healthy controls
(one-way ANOVA and chi-squared tests, p values >
0.05). In the post hoc comparisons, PD-MCI and PD-
NC patients showed significant differences only in the
MoCA score (two-tailed t-tests, p values < 0.001 after
Tukey’s correction for multiple comparisons).

The performance of random forest classifiers

We performed 100 runs of 10-fold cross-validation during the
all-relevant feature selection procedure in the training group,
which resulted in a total of 1000 training-validation cycles and
the corresponding random forest classifiers to discriminate
PD-MCI patients from PD-NC ones. The accuracy and
Cohen’s kappa coefficient of the classifiers were 85.2 ±
7.4% and 0.63 ± 0.18, respectively. The corresponding sensi-
tivity and specificity were 88.1 ± 7.9% and 82.6 ± 7.0%,
respectively.

Significantly relevant connectivity features

During the all-relevant feature selection procedure, a to-
tal of 1000 feature subsets were created and the

corresponding classifiers were built. The mean number
of features in the subsets was 15.4 (range from 8 to 20,
0.012–0.031% of all features). Using the permutation
test, nine features (Fig. 1) were identified to be signifi-
cantly relevant to patient classification (Table 2). These
nine features were listed as follows: the structural con-
nectivity between superior frontal gyrus (SFG) and STN;
between superior temporal gyrus (STG) and inferior pa-
rietal lobule (IPL); between hippocampus and thalamus,
and the functional connectivity between SFG and insula;
between inferior frontal gyrus (IFG) and precentral gyrus
(PrG); between PrG and insula; between STG and
precuneus; between parahippocampal gyrus (PhG) and
postcentral gyrus (PoG); and between PoG and insula.
Moreover, there were significant differences in these rel-
evant features between PD-MCI and PD-NC patients (all
p values < 0.01, after FDR correction; Fig. 1 and
Table 2). These features also significantly correlated
with MoCA score in all patients (all p values < 0.005,
after FDR correction; Fig. 2).

Group comparisons of identified markers were per-
formed in PD-MCI and PD-NC patients, and also be-
tween general MCI subjects and healthy controls from
the ADNI database, using the Mann-Whitney tests with
FDR correction for multiple comparisons. Compared to
the healthy controls, these nine features were significant-
ly different in PD-MCI patients and six of them (SFG-
STN and hippocampus-thalamus structural connectivity,
and IFG-PrG, PrG-insula, PhG-PoG, and PoG-insula
functional connectivity) were significantly different in
PD-NC pat ien ts (ANCOVA tes t s and pos t hoc
comparisons, p values < 0.01; Fig. 1), after regarding

Table 2 Significantly relevant
connectivity features to
discriminate PD-MCI and PD-NC
patients

Selection frequency (%)* Feature description PD-MCI PD-NC HC

92.3 SFG-insula FC 0.28 ± 0.23 0.50 ± 0.17 0.48 ± 0.10

90.6 SFG-STN SC 0.31 ± 0.03 0.34 ± 0.03 0.37 ± 0.04

89.1 STG-precuneus FC 0.17 ± 0.18 0.38 ± 0.21 0.45 ± 0.15

86.5 IFG-PrG FC 0.15 ± 0.20 0.33 ± 0.19 0.43 ± 0.11

85.8 PrG-insula FC 0.15 ± 0.23 0.32 ± 0.16 0.46 ± 0.12

84.3 STG-IPL SC 0.32 ± 0.06 0.36 ± 0.07 0.37 ± 0.04

82.1 Hippocampus-thalamus SC 0.35 ± 0.05 0.38 ± 0.04 0.41 ± 0.04

78.5 PhG-PoG FC 0.12 ± 0.17 0.28 ± 0.19 0.41 ± 0.14

76.9 PoG-insula FC 0.17 ± 0.23 0.35 ± 0.20 0.49 ± 0.10

FC, functional connectivity; HC, healthy controls; IFG, inferior frontal gyrus; IPL, inferior parietal lobule; PD-
MCI, PD patients with mild cognitive impairment; PD-NC, PD patients with normal cognition; PhG,
parahippocampal gyrus; PoG, postcentral gyrus; PrG, precentral gyrus; SC, structural connectivity; SFG, superior
frontal gyrus; STG, superior temporal gyrus; STN, subthalamic nucleus

Values are represented as the mean ± standard deviation, except for the selection frequency

*Defined as the number of iterations in which the feature was selected divided by the total number of iterations
performed
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Fig. 1 Nine identified connectivity features using the all-relevant feature selec-
tion algorithm. These features were listed as follows: SFG-STN SC (a), STG-
IPL SC (b), hippocampus-thalamus SC (c), SFG-insula FC (d), IFG-PrG FC
(e), PrG-insula FC (f), STG-precuneus FC (g), PhG-PoG FC (h), PoG-insula
FC (i). They all showed significant differences between PD-MCI and PD-NC
patients.Compared to the healthy controls, these nine featureswere significantly
different in PD-MCI patients and six of them (SFG-STN SC, hippocampus-

thalamus SC, IFG-PrG FC, PrG-insula FC, PhG-PoG FC and PoG-insula FC)
were significantly different in PD-NC patients, after regarding the mean abso-
lute displacement as a covariate (ANCOVA tests and post hoc comparisons).
Statistical significance is indicated by asterisks (***, p < 0.001; **, p < 0.01).
FC, functional connectivity; HC, healthy controls; PD-MCI, PD patients with
mild cognitive impairment; PD-NC, PD patients with normal cognition; SC,
structural connectivity
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the mean absolute displacement as a covariate to consid-
er the difference in the level of head motion during MRI
scanning. For the comparisons between general MCI
subjects and healthy controls, five relevant features
(SFG-STN and hippocampus-thalamus structural con-
nectivity, and PrG-insula, PhG-PoG, and PoG-insula
functional connectivity) showed no significant differ-
ences (p values > 0.05, after FDR correction; Fig. 3).

Connectivity-based prediction for the outcome of MCI
diagnosis

Nine connectivity markers of MCI were screened during the
feature selection procedure in the training group (100 pa-
tients). On basis of them, the random forest model constructed
from the training group achieved an accuracy of 83.9% in the
testing group (31 patients), to discriminate patients with and
without MCI. For the external validation sample from the
PPMI database, it performed unsatisfactorily in patient classi-
fication, with an accuracy of 67%. However, all these nine
connectivity markers of MCI showed significant differences
between PD-MCI and PD-NC patients from the PPMI data-
base (all p values < 0.01, after FDR correction; Supplementary
Figure S3).

Discussion

In brief, our study revealed that structural and functional con-
nectivity could independently characterize cognitive ability
and help MCI diagnosis in advanced PD patients. Using the
all-relevant feature selection procedure, we identified nine
connectivity markers of MCI. On basis of these markers, the
random forest model achieved an accuracy of 83.9% to dis-
criminate between PD-MCI and PD-NC patients.

In this study, we focused onMCI and excluded dementia in
advanced PD patients. MCI is considered to be a potential
transitional state between normal cognition and dementia in
PD and also an independent risk factor for dementia [33]. It is
important to investigate the neural mechanism of MCI in PD
and identify objective biomarkers that allow clinical diagno-
sis. More and more studies have concentrated on PD-MCI and
made substantial progress [34, 35], since the Movement
Disorder Society Task Force established criteria for PD-MCI
[1]. In our study, we extracted features of whole-brain struc-
tural and functional connectivity from a considerable number
of PD patients. Connectivity features were put into an all-
relevant feature selection procedure. Compared with the com-
monly used methods such as t-test and Pearson’s correlation
analysis to select related features and primary component
analysis to reduce the dimensionality of feature space, the

Fig. 2 Relationship between the
MCI-related features and MoCA
score. Significant correlations
were revealed between the nine
identified connectivity features
and MoCA score in all patients
(a-i, all p values < 0.005, after
FDR correction). FC, functional
connectivity; MoCA, Montreal
Cognitive Assessment Scale; SC,
structural connectivity
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all-relevant feature selection algorithm can identify all features
that significantly contribute to classification in a data-driven
manner.

Among all the involved sub-regions of connectivity, the
IPL and precuneus are both the key nodes of the DMN, which
is the most studied network related to cognitive impairment in
PD due to its implication in Alzheimer’s disease (AD).
Hypometabolism in the IPL and precuneus is a predictor of
cognitive decline from MCI to dementia [36]. In PD, a tau
PET study has shown increased signal in the precuneus, which
was associated with heightened cognitive impairment [37].
Early task-fMRI studies revealed that PD had a close relation
with altered patterns of deactivation in the precuneus, which
had been previously observed in AD [38, 39]. Tessitore et al
first found that cognitively unimpaired patients with PD com-
pared with healthy controls showed a decreased functional
connectivity in bilateral IPL, which significantly correlated
with cognitive parameters [40]. In a more recent study com-
paring early-stage drug-naïve PD-MCI patients and healthy
controls, a significant reduction was found in functional con-
nectivity between the posterior IPL and posterior cingulate
cortex (PCC), between the left precuneus and left SFG/PCC
[41]. In our case, structural and functional connectivity was
decreased in the comparison of PD-MCI and PD-NC patients
between the IPL/precuneus and STG, which was a part of
cognitive control network. These findings provide evidence
supporting the hypothesis that these IPL/precuneus-related

connectivity alterations underlie cognitive impairment in PD
and may be considered to be neuroimaging biomarkers for
clinical diagnosis.

The insula, a cortical region beneath the frontal, temporal,
and parietal lobes, is one of the core brain regions that anchor
the salience network [42, 43]. The connectivity of insula and
its relationship with cognitive impairment in PD were
assessed in previous studies [18, 44, 45]. Aracil-Bolaños
et al found that functional and graph theoretical changes ap-
peared in anterior insula and its node degree positively corre-
lated with global cognition in PD-MCI patients [18]. In a rs-
fMRI study segmenting the insula into ventral and dorsal sub-
regions, the functional connectivity between the dorsal ante-
rior insula and DMN highly correlated with the scores from a
battery of cognitive tests in PD [45]. These observations were
in line with the insular cortex atrophy and dopaminergic def-
icits in early-stage PD with MCI [46, 47]. In this study, we
used the Brainnetome Atlas in which the unilateral insular
cortex was parcellated into six sub-regions [23]. The connec-
tivity abnormalities of the dorsal dysgranular insula with the
primary somatosensory and motor cortex (the somatomotor
network) positively correlated with global cognition. The
dysgranular insula is involved in olfactory function and olfac-
tory dysfunction is a cardinal premotor symptom of PD, which
might explain our finding that these insula-related connectiv-
ity abnormalities occurred in PD-MCI patients but not in gen-
eral MCI subjects, compared to healthy controls.

Fig. 3 The comparisons of MCI-
related features between general
MCI subjects and healthy controls
from the ADNI database (a-i).
Five relevant features (SFG-STN
and hippocampus-thalamus struc-
tural connectivity, and PrG-
insula, PhG-PoG, and PoG-insula
functional connectivity) showed
no significant differences (Mann-
Whitney tests, p values > 0.05,
after FDR correction). Statistical
significance is indicated by
asterisks and n.s. (***, p < 0.001;
**, p < 0.01; n.s., not significant).
FC, functional connectivity; HC,
healthy controls; MCI, mild
cognitive impairment; SC,
structural connectivity
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Based on relevant connectivity features, our random
forest model achieved an accuracy of 83.9% to distinguish
between PD patients with and without MCI. In a previous
rs-fMRI study, a mean accuracy of 80.0% was obtained in
separating PD patients with MCI from those without it in
the validation sample [44]. PD-MCI is a heterogeneous
entity in phenotype, timing, and progression, affecting a
range of cognitive domains including attention and work-
ing memory, executive, language, memory, and visuospa-
tial [48]. According to the Movement Disorder Society
Task Force criteria [1], MCI diagnosis in PD is based
on the assessment result of an insidious decline in cogni-
tive abilities reported by the patient or observed by the
clinician, not caused by other comorbidities. A range of
standard neuropsychological tests were recommended for
this assessment [1]. However, the assessment need be per-
formed by experienced clinicians and the involved neuro-
psychological tests may be difficult for some PD patients
such as patients with speech disorder, dementia, or a low
degree of compliance. In this situation, the machine learn-
ing model in our study was constructed on the basis of
patients’ DTI and rs-fMRI data without performing any
specific task, which revealed its potential clinical applica-
bility for MCI diagnosis in PD. In addition, the role of
these objective connectivity markers can be further ex-
plored in the diagnosis criteria for PD-MCI.

We recruited 165 PD patients in a single cohort and
used an all-relevant feature selection procedure within
cross-validation loops to increase the generalizability of
random forest classifiers. The machine learning model
performed moderately effectively to predict the outcome
of MCI diagnosis in the internal split sample, but not in
the external validation sample from the PPMI database.
There were some possible explanations for the unsatis-
factory generalization ability of the model, such as the
different race, MRI scanner, and sequences. More im-
portantly, the patients from the PPMI database were in
the early stage of PD and unmedicated, while we in-
cluded advanced PD patients (disease duration > 5
years) with an average levodopa equivalent daily dose
(LEDD) of 774.1 mg from our cohort. These variables
might contribute to the poor performance. Now we pro-
ceed to a longitudinal study to test the accuracy of our
findings and evaluate the predictive value of identified
connectivity markers for cognitive decline in early-stage
PD patients of our cohort. Despite the unsatisfactory
performance of the model in the external sample, the
main objective of this study was to identify connectivity
features significantly contributing to MCI diagnosis in
PD. The group differences of these nine connectivity
features existed both in our database and the external
sample, which suggested that they could become poten-
tial MCI markers in PD.

Conclusions

Compared to PD patients with normal cognition and healthy
controls, we found an abnormal pattern of structural and func-
tional connectivity in advanced PD patients with MCI, which
independently contributed to patient classification. Under the
combination of the connectivity markers for MCI, moderately
successful discrimination was achieved for MCI diagnosis in
advanced PD patients.
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